

MATHEMATICS FOR ENGINEERS

MATLAB TOPICS

- (1) Plot a given function or functions on a given interval.
- (2) Writing a for loop e.g. plotting n th roots of unity, sum of the first n natural numbers, etc.
- (3) Writing a function.
- (4) Defining matrices, vectors, operations with matrices and vectors.
- (5) "Dotted" arithmetic operations.
- (6) Linear dependency and independency.
- (7) Rank, inverse and determinant of matrices.
- (8) Solving linear system of equations.
- (9) Calculation of eigenvalues and eigenvectors.
- (10) Solving least square problem, and plotting the data and the model function in one figure.
- (11) Lagrange interpolation, and plotting the data and the polynomial in one figure.
- (12) Spline interpolation.
- (13) Numerical integration.

FIRST SAMPLE

- (1) Let A be a 4×4 Hilbert matrix. Define an arbitrary b , and solve the linear system $Ax = b$. Calculate the condition number, the inverse, the rank and the determinant of A .
- (2) Plot the hundredth roots of unity!
- (3) Give the parameter of the model function $F(t) = x_1 + x_2 \cos(\pi t) + x_3 \sin(\pi t)$ which fits the best in least square sense to the following data!

t_i	0.1	0.5	1.2	1.5	2	2.1	2.4	3	3.2
f_i	3.9	2.6	-0.8	0.3	3.2	3.8	3.2	-0.7	-0.9

Plot the data and the model on a same figure!

SECOND SAMPLE

- (1) Define the functions $f(x) = \frac{1}{\sqrt{1+2x^2}}$, $g(x) = x \sin(x^2)$ with the **function** command! Plot them over the interval $[-2, 2]$ on the same figure!
- (2) Calculate the eigenvalues and eigenvectors of the following matrix!

$$\begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- (3) Determine the minimal degree polynomial which interpolates the following data!

x_i	1	1.5	2	2.5	3	3.5	4	4.5	5
f_i	0	1	0	-1	1	3.2	3.2	-0.1	-0.1